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ABSTRACT
We propose a system that tracks each occupant’s personal share

of energy use, or “energy footprint”, inside commercial building

environments, and provides insights to occupants on the real-time

energy impact of their actions. We propose a new space-centric

policy for fair apportionment of energy in shared environments and

demonstrate a method for automatically determining space-centric

energy zones. We design and implement ePrints – a system for

tracking personalized energy usage in real-time. ePrints supports

di�erent apportionment policies, with µs-level footprint compu-

tation time and graceful scaling with size of building, frequency

of energy updates, and rate of occupant location changes. Finally,

we present applications enabled by our system, such as mobile

and wearable applications to provide users timely feedback on the

energy impacts of their actions, as well as applications to provide

energy saving suggestions and inform building-level policies.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; •Computer systems organization →Real-time systems;
•Spatial-temporal systems →Location based services;
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1 INTRODUCTION
Buildings consume a large portion of the total electricity in the

United States. Products such as Nest smart thermostats have emerged
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Figure 1: Real-time energy footprint of an occupant. �e
colored stripes indicate di�erent spaces where the occupant
is located (yellow refers to the hallway).

in recent years to help people reduce their daily energy consump-

tion in homes. While the home is a sensible area to focus, we spend

the majority of our active moments during the day inside commer-

cial buildings. Consequently, the greatest opportunity for us to

reduce energy usage is when we are at work and inside our o�ces.

However, promoting energy savings in commercial and o�ce

buildings comes with a di�erent set of challenges than in a resi-

dential se�ing. Unlike in residential areas where families pay their

own energy bills, there is li�le incentive for occupants to save en-

ergy in commercial buildings, as the energy bills are generally paid

by employers and companies. Also, while commercial buildings

are becoming smarter with increasing numbers of energy mon-

itoring endpoints from advances in building energy monitoring,

the e�ect of an occupant’s personal actions on the overall energy

consumption of the building remains unknown. �is is because

commercial building rooms, spaces, and appliances are generally

shared among multiple occupants, so the non-trivial problem of

fairly apportioning and a�ributing the correct energy consumption

to each occupant is exacerbated compared to residential homes. As

a result, an individual, who is ignorant of his or her own consump-

tion within the building, is less motivated to save energy. In this

paper, we propose a system that tracks each occupant’s unique and

individualized energy usage, or energy footprint, in real-time in

commercial building environments. Our system provides insights

to occupants on the real-time energy impact of their actions.
Figure 1 shows the annotated footprint of one occupant in our

system over the course of a morning: (A1) David enters the deploy-

ment area, and ePrints associates the energy consumption of the

hallway environment (primarily HVAC and lighting) with him and

calculates his energy footprint. (A2) He moves to lab area A, and

his footprint changes to re�ect his consumption in the new area.

(B) David powers on personal energy resources. (C) Other occu-

pants enter the lab area, thus reducing David’s energy footprint.
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(D) David moves to O�ce A for a meeting, and shares the energy

consumption with the other occupants in the o�ce. (E1) A�er the

meeting, he returns to lab A; his energy footprint increases as a

response. (E2) David receives a suggestion to reduce his energy

consumption by changing the temperature setpoint of the room.

(F1) Occupants in lab A begin to leave for lunch; David, who is

staying later, begins to see an increase in his energy footprint as

a larger share of HVAC and lighting is apportioned to him. (F2)

Finally, David leaves the lab and his footprint drops to zero.

In this work, we present the following contributions:

• We present the design and implementation of a scalable energy

footprinting system that provides real-time energy footprints
to occupants in shared environments. Algorithms that propa-

gate energy footprint changes, combined with a tripartite graph

that utilizes spaces as an intermediary stage between energy re-

sources and occupants, enables a low-latency system that scales

linearly with occupants and energy monitoring updates.

• To fairly apportion energy inside shared environments, we

proposes a new apportionment strategy based on the notion

of “spaces” where spaces are de�ned based on human-centric
zones instead of traditional HVAC zones.

• We further introduce a policy manager that supports diverse

apportionment strategies, including space-level and individual-

level apportionment policies. �is policy manager is critical for

ePrints to be adopted in a variety of shared environments.

• We deploy ePrints in a shared environment, perform studies

with occupants, collect energy footprint data, and evaluate the

system on the fairness of multiple policies to demonstrate the

advantages of ePrints in a shared environment.

• We demonstrate ePrints’ potential to enable other applications,

such as energy saving suggestions and building-level policies.

We leverage and build upon existing building energy work in-

cluding building energy monitoring and indoor localization. We

do not claim novelty or contributions in these two areas, instead

focusing on the energy apportionment policy, architecture, algo-

rithm, and system design to fairly and e�ciently apportion energy

inside large buildings into personal energy footprints. We further

demonstrate the potential of ePrints as a platform to enable diverse

human-centric building energy applications.

2 RELATEDWORK
�is project draws from and builds upon a diverse set of research

areas, including occupancy detection, indoor localization, building

energy monitoring, and energy apportionment. However, the focus

of this project is not to make improvements to indoor localization

or energy monitoring, but to utilize them as building blocks as

part of a larger system that fairly and e�ciently apportions energy

inside commercial buildings into individualized energy footprints.
Energy monitoring in commercial buildings o�en includes mon-

itoring of miscellaneous electric loads (MELs), lighting, and HVAC

(heating, ventilation and air conditioning). In MELs monitoring,

plug-load meters, both wired [9] and wireless [11, 17], have been

used to monitor plug-loads directly. Plug-meters are accurate and

simple to deploy in homes. However, they become less practical

in large buildings with thousands of electric outlets. An interme-

diate solution is to monitor electricity usage at the circuit level,

by tapping onto circuit breakers [22]. �is approach is more cost-

e�ective than plug-meters, but provides a less granular view of

energy usage. At the other end of the spectrum, non-intrusive load

monitoring (NILM)-based approaches use algorithmic techniques

to estimate plug-level usage from a single high-�delity power me-

ter at the house or building level [14], some require training [20]

or additional sensor inputs [15]. While the cost of NILM-based

approaches is lower, accuracy is o�en less than desirable. Lighting

and HVAC in commercial buildings can be monitored directly by

connecting to the building management system (BMS) through

protocols such as BACNet, LonTalk, and Modbus [3]. Recent works

have also demonstrated that equivalent energy consumption of

HVAC resources can be estimated using data feeds, such as fan

speeds and valve positions, combined with physical HVAC zone

models [2]. However, BMS is o�en unavailable or inaccessible with-

out going through layers of administrative approval. To obtain

a holistic view of building energy use, ePrints interfaces with a

mixture of underlying building energy monitoring technologies to

provide full coverage of energy resources.

Occupant localization is another key component of ePrints. Var-

ious indoor localization technologies have been proposed over the

past two decades. Due to the ubiquity of smartphones, many popu-

lar solutions are based on received signal strengths (e.g. RSSI) of

WiFi/Bluetooth signals [1, 13, 19]. In general, WiFi-based systems

can achieve good accuracy and can utilize existing infrastructure

in commercial buildings [27]; however, placement of WiFi access

points (APs) is typically optimized for wireless coverage, not local-

ization. In comparison, Bluetooth Low Energy (BLE) beacons are

inexpensive, ba�ery-powered, and can be optimally deployed to

maximize localization accuracy. Previous works have also shown

that BLE methods outperform WiFi-based methods in terms of

indoor localization accuracy [27]. Many other types of indoor local-

ization technologies, including vision-based [7] and acoustic-based

methods [10, 24], have been proposed with varying degrees of ac-

curacy, cost, and ease of deployment. Magnetic �eld strengths and

modulated magneto-inductive beacons can also be used to esti-

mate object locations [12, 18, 23] with high accuracy and precision.

ePrints works with a diverse set of localization technologies that

provide indoor “space-level” occupant location accuracy.

Apportionment strategy is the policy that determines how en-

ergy is divided among occupants in shared environments and can

have drastic e�ects on the fairness and incentives to push occupants

and building managers to reduce energy usage. Since there is o�en

no single correct solution for apportionment, research in this area

has provided numerous methods for dividing energy consumption

among occupants within a physical space [8, 26]. Apportionment

strategies in previous works typically apportion energy consump-

tion of a physical HVAC/lighting zone directly to its occupants.

However, in large shared environments, an HVAC/lighting zone is

o�en divided into sub-spaces occupied by distinct groups of peo-

ple, where each sub-space has a �xed area/volume and its own

energy-use preference or requirement (e.g. di�erent departments

sharing a common cubicle space; two research groups with di�erent

temperature preferences sharing a single lab area).

In recent years, a few research projects have combined energy

monitoring, occupant localization, and energy apportionment to

estimate personal energy consumption in real-time. �ese systems
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focus on residential homes or buildings where rooms are owned

individually. For example, [16] and [25] monitor energy consump-

tion in residential homes and in a dormitory se�ing to understand

the energy consumption of each occupant. However, in large com-

mercial buildings such as o�ce spaces, where one room or space

could house hundreds of employees belonging to di�erent depart-

ments or having di�erent functions, a di�erent monitoring system

is required to accurately monitor and fairly apportion energy con-

sumption. We address these challenges by introducing the notion

of human-centric zoning, described in more detail in section 4.1.1.

3 CHALLENGES
To ensure a fair and timely energy footprint in commercial buildings,

two challenges must be addressed: how to fairly apportion energy

consumption to individuals, and how to design scalable and e�cient

algorithms to enable energy footprints in real-time.

3.1 Energy Apportionment Policy
Hay et al. [8] de�nes energy apportionment as “a process of divid-

ing up the total consumption of a building… and allocating it to

individuals”. In commercial buildings, the total consumption can be

thought of as the aggregate of all energy consuming resources, in-

cluding HVAC, lighting, and plug loads. A personal energy footprint

will display the total energy consumption that a single occupant is

apportioned at a given time. To illustrate the challenges in de�n-

ing fair energy apportionment policies, we present two realistic

scenarios in commercial buildings.

Our �rst example is a single space that is jointly shared by two

companies and is cooled by a single HVAC unit. Company A oc-

cupies 20% of the space and has two employees, while company

B occupies the other 80% of the space and has two employees.

Common apportionment policies such as dividing the HVAC con-

sumption evenly over the occupants may succeed at the individual

level, but fail to incorporate the uneven split of the company areas.

Although the HVAC consumption is allocated equally among the

occupants (25%), there is an unfair split of consumption due to the

uneven split in space that the employees occupy.

�e second example is the case of o�ce worker A in his personal

cubicle that comes equipped with his personal desktop computer.

Worker A is the only person who uses this desktop. If worker B

comes to visit worker A at his cubicle, some of worker A’s desktop

consumption may be allocated to worker B, unless there is a policy

that associates the device to worker A. As a result, worker B will be

unfairly apportioned a portion of worker A’s desktop consumption.

�e two examples presented show that apportionment fairness

varies depending on space organization and function. First, com-

mercial buildings o�en have rooms, open areas, and resources that

are shared among di�erent groups or organizations; as such, di-

viding spaces based on the physical properties of the building (e.g.

rooms in the building �oor plan or HVAC zones), as is o�en done

in residential areas, is not su�cient to ensure fair apportionment.

Second, di�erent spaces have di�erent measures of fairness depend-

ing on the function of the space (e.g. personal o�ce space vs. a

public area). It is thus imperative to design a system that is �exible

to di�erent energy apportionment policies and adaptable to future

changes in apportionment policy.

3.2 Real-Time and Scalable Energy Footprint
Computation

�e second challenge arises from the need of a scalable system that

can provide real-time energy footprint updates. Personal footprints

updates should be available to the user within a few seconds, at

most, to ensure an accurate footprint; it is important to note that

the delay between when an energy change occurs and when this

change becomes visible to the user depends on how o�en the user

client (e.g. a smartphone) polls for updates. Additionally, ePrints

must meet the timing requirements even with a large number of

devices, spaces, and occupants. �e rest of the section introduces

the metrics we use to evaluate latency and scalability.

In our system, there are two events that cause changes in per-

sonal energy footprints: energy resource consumption changes and

occupant location changes. We refer to the latency of each event

as energy change latency and location change latency, respectively,

and de�ne each latency as the time di�erence between the change

and the feedback to the occupant. �e energy change latency is the

sum of three sources of latency: energy monitoring response time,

energy footprint computation, and feedback latency. �e energy

monitoring response time is dependent on the rate that energy

monitoring nodes report updates and is discussed in Section 5.2.

�e feedback latency, or the time between the completion of the

footprint computation and the feedback medium (mobile device,

web portal, wearable) noti�cation, is discussed in Section 5.4.2.

Location change latency is also a sum of three sources of latency:

localization delay, energy footprint computation, and feedback

latency. �e localization delay, or the delay between the physical

change in location of an occupant and the acknowledgement of the

server of the location change, is discussed in Section 5.3.

�e energy footprint computation latency, or the time to compute

an individual’s energy footprint, is critical to the scalability of

ePrints. Especially in commercial buildings with large numbers of

occupants, energy consuming resources, and spaces, the energy

footprint computation latency should remain low. �e algorithms

chosen must also scale gracefully to any building size.

For ePrints to be scalable, personal energy footprinting queries

must have low computational complexity, and all computations

must be scalable to any building size. �e system must be capable

of servicing hundreds of footprinting queries per second with low

latency even in deployments with thousands of energy consuming

resources, hundreds of zones, and thousands of people.

4 SYSTEM DESIGN
In this section, we propose new apportionment and system concepts

to address the challenges from Section 3. To address the issues of

energy apportionment in commercial buildings, we propose three

novel concepts: a new scheme for partitioning building spaces based

on space ownership or human behavior, which we term “human-

centric zoning”; a tripartite graph representation for storing energy

data, as well as the idea of space-level and individual-level policies

for dividing consumption of energy resources; and a policy manager

to accommodate di�erent types of apportionment policies.

To address the latency and scalability of ePrints, we develop and

analyze the time complexity of algorithms for energy updates and

queries over the proposed tripartite graph data structure.



BuildSys, November 8-9, 2017, Del�, The Netherlands P. Wei et al.

4.1 Addressing Energy Apportionment
4.1.1 Human-Centric Zoning. As mentioned in Section 3.1, one

of the primary challenges for fair energy apportionment in com-

mercial buildings is the prevalence of rooms, spaces, and resources

that are shared between multiple groups. To address this issue,

we propose the idea of human-centric zoning, where spaces are

partitioned based on either space ownership or occupant behav-

ior rather than physical boundaries, like rooms. We discuss two

methods of accomplishing this partitioning.

Human-centric zoning based on space ownership can be accom-

plished by dividing rooms and areas based on the spaces assigned

to each group or entity. In the case of the �rst example mentioned

in Section 3.1, rather than denoting the entire room as a single

space, we de�ne two spaces within the room where the employees

of company A and company B reside. As a result, the occupants are

only responsible for consumption within the portion of the room

that belongs to their company. However, a priori knowledge of

space ownership is required to partition using this method.

If a priori knowledge of space ownership is not known, then

human-centric zoning can still be accomplished by partitioning

based on mobility pa�erns (location traces) of occupants. �is

requires occupants to be localized using indoor localization tech-

nologies. For ePrints, we used BLE beacons due to their ease of

deployment and low-cost. Additionally, their room/cubicle-level

accuracy is su�cient for our application. We distributed BLE bea-

cons throughout our deployment space to obtain complete physical

coverage. Bluetooth �ngerprints (e.g. RSSI values) are collected and

reported to the server by the Energy Footprint application installed

on the occupant’s smartphone. �is allows us to collect occupant

location traces in coordinate space (x ,y), following standard �n-

gerprint localization algorithms such as in [21]. Once a signi�cant

amount of coordinates are collected, one can cluster the coordi-

nate data to determine partitions of the space using any clustering

algorithm and any method for determining the number of clusters.

4.1.2 Space-Level and Individual-Level Policies. Once building

spaces are partitioned via human-centric zoning, we use the tripar-

tite graph representation, KD,S,P , shown in Figure 2, to organize

the sets of energy resources (D), spaces (S), and occupants (P ). In

the tripartite graph, an edge exists between zone s ∈ S and resource

d ∈ D if the resource in�uences the zone, and an edge exists be-

tween occupant p ∈ P and zone si ∈ S if the occupant is localized

to the zone. �e neighborhood N of a node is thus the set of all

other nodes connected via edge to that node. �e primary bene�t

of the tripartite graph model is the complete dissociation of shared

resources from the occupants. �is dissociation enables us to pro-

pose the idea of space-level and individual-level policies for fair

apportionment of shared resources in commercial buildings.

Recall that in commercial buildings, the issue of fair energy ap-

portionment arises because di�erent groups of people are o�en

within the same physical boundary that common apportionment

schemes use to determine spaces. Using human-centric zoning,

the building is partitioned based on space ownership of di�erent

groups to resolve this issue. However, there are now energy re-

sources that are shared between di�erent spaces. To resolve this

new issue, we propose to �rst apportion resources over each space

Figure 2: Illustration of the tripartite graph KD,S,P .

using space-level policies. �en, using individual-level policies, en-

ergy apportioned to a space is further divided among the occupants.

If we de�ne the space apportionment policy function, f (s,d), and

the individual policy function, д(p, s,d), we can de�ne the total

apportionment policy function (Equation 1), which refers to the

aggregate apportionment policy.

h(p, s,d) = f (s,d)д(p, s,d) (1)

Spli�ing the policy into space-level apportionment and individual-

level apportionment allows for more �exibility and more diverse

apportionment schemes for di�erent situations. Our zoning model

and the concept of dual-level policies enables our footprinting sys-

tem to achieve fairness among spaces/groups as well as fairness

among individuals using shared energy resources.

4.1.3 Policy Manager. Previously, we presented the idea of dual-

level apportionment policies that enable us to independently im-

plement fair policies over groups of people, common spaces, and

occupants within each space. However, di�erent subsets of spaces,

devices, or individuals may require a di�erent set of policies to

satisfy fairness; to address this issue, we introduce the idea of a

policy manager that allows managers to implement di�erent space-

level and individual-level policies for di�erent spaces, devices, and

individuals depending on the situation and fairness requirements.

4.2 Scalable Energy Footprinting Algorithms
A system capable of computing energy footprints in real-time re-

quires algorithms that are both e�cient as well as scalable. As

touched upon in [26], simpler apportionment policies are not as de-

sirable as more complex policies, because they cannot fully capture

the speci�c interactions between people and the building; however,

simpler apportionment policies tend to surpass more complex poli-

cies in terms of runtime, which can make a signi�cant di�erence if

the policy is recomputed many times.

In our system, there are three common types of possible opera-

tions performed on the tripartite graph: energy resource consump-

tion change, occupant location change, and occupant footprint

calculation. When a device’s energy consumption changes or an

occupant changes location, we are faced with a decision: to update

the a�ected occupants’ energy footprints immediately, or postpone

the update until the occupant requests their footprint. We designed

two sets of algorithms for the updates and footprint queries, one

that immediately propagates the change to the occupants (called

propagation), and one that postpones the footprint calculation

until the occupant footprint query occurs (called delayed update).
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Algorithm 1: Occupant Location Change with Propagation
1: procedure locationChangeUpdate(P , ssource , sdest ,D,p)

2: Dsource ← N(ssource ) ∩D . devices in�uencing the space

3: Psource ← N(ssource ) ∩ P \ p . occupants in the space

except person changing location

4: for pi ∈ Psource do
5: πpi ← 0 . πpi is the energy apportioned to person pi
6: for d ∈ Dsource do
7: UpdatePolicy(д,pi , ssource ,d)
8: πpi ← πpi + f (ssource ,d)д(pi , ssource ,d)E(d)
9: Ddest ← N(sdest ) ∩ D

10: Pdest ← N(sdest ) ∩ P \ p
11: for pj ∈ Pdest do
12: πpj ← 0

13: for d ∈ Ddest do
14: UpdatePolicy(д,pj , sdest ,d)
15: πpj ← πpj + f (sdest ,d)д(pj , sdest ,d)E(d)
Algorithm 2: Resource Energy Change with Propagation
1: procedure energyConsumingResourceUpdate(d, S, P ,∆E)

2: for s ∈ N(d) do . Spaces in�uenced by device

3: for p ∈ N(s) ∩ P do . People localized to space

4: UpdatePolicy(f , s,d)
5: πp ← πp + f (s,d)д(p, s,d)∆E
Algorithm 3: Energy Footprint�ery (delayed update)

1: procedure footprint�ery(p)

2: s ← Space(p)
3: πp ← 0

4: for d ∈ N(s) do
5: UpdatePolicy(f , s,d)
6: UpdatePolicy(д,p, s,d)
7: πp ← πp + f (s,d)д(p, s,d)E(d)
Table 1 presents the runtime of each algorithm (the algorithms

with runtime greater than constant time are shown in Algorithms 2,

1, and 3). We de�ne the branching factor (b) as the average number

of energy consuming resources associated with each space.

Algorithm Runtime Complexity Runtime in our System

Resource Update with Propagation O(b |P ||D | ) 1.446µs

Location Change with Propagation O(b |P ||S | ) 6.735µs

Footprint Computation (Propagation) O(1) 422ns
Resource Update with Delayed Update O(1) 432ns
Location Change with Delayed Update O(1) 1.418µs
Footprint Computation (Delayed Update) O(b) 2.254µs

Table 1: Runtime complexity and system runtime of the al-
gorithms in ePrints.

In our testbed, we assume that the number of times an occupant

changes location or a resource consumption changes is much less

frequent than energy footprint queries; thus, we implement algo-

rithms with propagation for reduced footprint computation latency.

�is is validated in Section 6.4, where we evaluate and compare the

di�erent algorithms in realistic deployment scenarios.

Figure 3: System architecture block diagram.

5 ARCHITECTURE AND IMPLEMENTATION
As shown in Figure 3, ePrints is composed of four loosely-coupled

subsystems that work together to provide real-time, personal en-

ergy footprints. �e Energy Footprinting Service, which includes

the Policy Manager, System States and Data Storage and Retrieval,
reside in the cloud, and the components communicate with each

other via standardized interfaces. �e Energy Footprinting Service

exposes standardized interfaces and APIs that communicate with

clients such as Android and iOS applications installed on occupants’

mobile devices, as well as a variety of energy monitoring devices in-

cluding wireless power meters, indirect sensing nodes and BACnet

monitors placed around the deployment area.

5.1 Energy Footprinting Service
�e Energy Footprinting Service is the central subsystem respon-

sible for receiving localization and energy monitoring data, com-

puting personal energy footprinting data according to the appor-

tionment policies, and exposing the available data to client-side

applications. �is service is composed of the policy manager respon-

sible for apportionment policies, and the state manager responsible

for energy footprinting computations and data storage.

5.1.1 Policy Manager. �e policy manager is central to the fair

apportionment of energy to the occupants. It is able to accom-

modate di�erent types of apportionment policies, as discussed in

Section 4.1. �e policy manager currently manages 4 policies: two

space level policies – equal division (equation 2) and proportional to

volume (equation 3), as well as two individual level policies – equal

division (equation 4) and proportional to isolation (equation 5) [26].

However, the policy manager is �exible such that other policies,

such as those discussed in [26], can be easily interchanged.

f (s,d) = 1

|{s ∈ N(d)}| (2)

f (s,d) = V (s)∑
si ∈N(d )V (si )

(3)

д(p, s,d) = 1

|{p ∈ N(s) ∩ P}| (4)

д(p, s,d) = E(p)∑
pi ∈N(N(d ))∩P E(pi )

(5)

Here, V (s) refers to the volume of space s , N(d) refers to the

spaces in�uenced by the deviced , andN(s)∩P is the set of occupants

localized to the space s . �e policy manager allows ePrints to be

adaptable to a variety of shared environments.
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5.1.2 State Management. �e system maintains an in-memory

data structure containing all energy consuming resources, which

include HVAC systems, lighting, and power outlets, as well as

occupant statuses and energy zones. It keeps track of the latest

states of all energy consumption and the occupants’ associations

with them. �e relationships between energy consuming resources

and spaces are initialized using pre-con�gured metadata, some of

which are available in the Building Management System (BMS)

while others are not and require manual setup. When an energy

consuming resource reports a new power consumption value, or

an occupant’s location is updated, the in-memory graph changes to

re�ect the updated energy footprint for all occupants as described

by Algorithms 2 and 1 in Section 4.2.

5.1.3 Data Storage and Retrieval. �e system periodically stores

the latest energy state, which we term a “snapshot”, into the data-

base with a corresponding timestamp. While a user can check his

most recent energy consumption in the latest state, the historical

snapshot can reveal a time-series of the energy consumption, or

the more complete energy footprint.

A trade-o� exists between higher snapshot sampling frequency

and lower storage demand; saving data more frequently can help

reconstruction of a more accurate historical footprint, but at the

cost of more storage space. We mitigate this dilemma by using a

variable-sampling-rate scheme. �e system stores the snapshot

to the database at regular intervals when idle, but stores more

frequently when a user’s energy footprint changes abruptly, such as

during a location change or an energy consuming resource change.

Our implementation uses MongoDB to store the state snapshots,

as a NoSQL database is well suited for storing our state data struc-

tures. �e state is split into three sets, each stored into one collec-

tion. We also add the timestamp as an indexing key for the database,

as it is a frequent criteria for many queries. �e central system also

a�empts to reconstruct the in-memory state by reading previous

snapshots from the database during any failure recovery process.

5.2 Energy Monitoring
Energy monitoring has been studied extensively in the context

of commercial buildings. For ePrints, we focus on the following

three types of energy monitoring: HVAC monitoring, light sensing,

and plug-load monitoring. It is possible to further subdivide these

types, but for the purposes of our system, these three types provide

su�cient granularity for apportioning energy consumption.

(1) Plug-meters are deployed across the building testbed, including

student workstations, o�ces, and labs. All existing electrical

appliances are transferred to metered power strips. �ey are

con�gured to report at the maximum �xed reporting frequency.

(2) Our system reads building device statuses via BACnet, a build-

ing automation protocol. We collaborate with the campus facili-

ties team to obtain a mapping from BACnet IDs to the �oor plan

in BMS, as well as details of energy-consuming components

in the HVAC system. We pull data from these components

periodically and report the estimated power consumption.

(3) Some HVAC units are not exposed under BACnet, and the

occupancy-aware smart lighting system in our building is not

connected to BMS; we monitor these resources with two types

of customized indirect sensing nodes. �e �rst, for detecting

lighting, consists of a Huzzah Feather board and a TSL 2561

luminosity sensor. �e second, for sensing HVAC, consists of

an Intel Edison board and a Wind Sensor from Modern Devices.

�ey are con�gured to report immediately when a change is

detected, or at a minimum frequency when idle.

We have adapted the process of determining HVAC energy con-

sumption from [3] to accommodate our building’s sensor data, such

as the heat transfer equation to determine heating and cooling loss,

applying the equation to both fan coil units (FCU) and variable air

volume (VAV) terminal units. In addition, we determine the electric

consumption due to the air handling units (AHU) by dividing the

VAV unit’s air �ow by the maximum air �ow from the AHUs, and

multiplying by the maximum power consumption of the AHU.

�e energy monitoring subsystem handles incoming energy

consumption reports of various formats, each requiring speci�c

adaptations. To limit adaptation e�ort, the subsystem reports to

the cloud service using standardized protocols and data formats

(HTTP, RESTful API, and JSON).

Some devices (e.g. commercial plug-meters) can only submit

energy updates at a �xed interval, while others (e.g. customized

sensing nodes) are more con�gurable. To ensure real-timeliness, we

use an interrupt-driven energy consumption submission whenever

possible; that is, an energy monitoring device submits an immediate

update upon sensing a large, abrupt change in the power of the

energy consuming unit. �is allows the energy snapshot to closely

follow the signi�cant changes in energy consumption.

5.3 Localization
�e localization subsystem can work with di�erent localization

technologies, providing a standardized interface to various localiza-

tion implementations. Due to the ubiquity of smartphones, WiFi

�ngerprinting and Bluetooth beaconing are two popular indoor

localization techniques. We chose Bluetooth due to its ease of

deployment, low cost, and ability to meet ePrints’ relatively course-

grained location accuracy requirement. We deployed 42 BluVision

iBeek beacons in the testbed, and trained multiple classi�ers to

achieve high accuracy and low testing computation time.

�e location change latency mentioned in 3.2 is divided into

device polling time and server classi�cation time. Each mobile

device polls for Bluetooth beacon signal strength values at a set

interval. Server classi�cation time of location is dependent on the

classi�er; although k-Nearest Neighbors (kNN) is the simplest to

deploy, we instead implemented Support Vector Machines (SVM)

for higher accuracy and lower classi�cation time.

�e placement of beacons to maximize localization accuracy

while reducing cost is an interesting problem that depends heavily

on the environment. We employed a naive strategy for placing

beacons; we placed more beacons in locations with dense, smaller

sized zones, and less beacons in locations with sparse, larger sized

zones. However, prior knowledge of locations of interest allows for

more complex strategies such as those described in [4, 5].

5.4 Web, Mobile, and Wearable Applications
Our system supports various client applications via a standard set

of APIs. We list some frequently used ones below:

historical_footprint(begin_time, end_time, user_id)
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Figure 4: Personal Energy Footprint Web Portal

Figure 5: Le� to right: iOS application settings tab, Android
application energy footprint tab, AndroidWear application.

return: [(timestamp, foot_print_val)]
current_power(user_id)

return: (timestamp, foot_print_val)
submit_location(user_id, localization_data)

return: user_location

Web, mobile and wearable applications demonstrate the potential

of ePrints to inform occupants and induce change. We describe

them in more detail this section.

5.4.1 Personal Energy Footprint Web Portal. We provide various

visualizations of energy footprints through the application’s web

portal. For example, Figure 4 displays the personal energy footprint

of an occupant separated by the resource type. �ese footprints and

visualizations provide the means to analyze and visualize energy

consumption behavior of devices, rooms, and occupants.

5.4.2 Mobile. We develop Android and iOS smartphone client

application for building occupants to provide timely feedback about

the consequences of their actions on their personal energy footprint.

�e application collects and submits localization �ngerprints to

the Energy Footprinting Service at a periodic interval when the

mobile device is within the experiment area. �e service responds

with the occupant’s current energy footprint. �e feedback latency

mentioned in Section 3.2 is dependent on the periodic interval;

a longer interval results in longer feedback latency. �e client

displays the occupant’s real-time energy footprint broken down

by resource type, as well as a visualization of the energy footprint

history, as shown in Figure 5. �e occupant also has the option

Figure 6: Energy Footprint Dashboard

of se�ing an alarm threshold, which triggers when the occupant’s

energy footprint exceeds the threshold.

5.4.3 Wearables. In addition to the Android and iOS smart-

phone clients, we develop an application for Android Wear as shown

in Figure 5. �e Android Wear displays the same energy footprint

breakdown that appears in the smartphone client, as well as no-

ti�cations when alarms are triggered to provide more immediate

feedback to the occupant.

5.4.4 Energy Dashboard. Finally, we provide a dashboard at

the front of the monitored section of the building that displays

various energy consumption statistics, as shown in Figure 6. �e

statistics shown include energy consumption on a minute-level

scale, consumption over the week, consumption breakdown, and

an estimated energy bill for the day. Additionally, the dashboard

shows the energy footprints of the occupants with the top three

highest consumption. �e idea is to show to the general public an

overview of the general consumption pa�ern for the building, as

well as to reveal the occupants with the most consumption in hopes

of motivating occupants to save energy (with user consent).

6 SYSTEM EVALUATION
6.1 Deployment Setup
To evaluate ePrints, we conducted a 2.5 month experiment inside

a commercial building to collect personal energy footprints. �e

testbed area, which consists of 2 full �oors inside of a 20-story

campus building, is shared by multiple departments. �e testbed

area is 10,000 square feet, covering diverse types of spaces including

o�ces, cubicles, wet labs, and conference rooms. A total of 53

BACNet endpoints, 15 lights, and 29 plugmeters were monitored.

We invited occupants in the area to participate in our research

study. We gathered energy footprint data from 22 participants

over the span of 10 weeks. Participants installed either our iOS or

Android application, and registered for ePrints.

6.2 Apportionment Policy
�e system should be �exible enough to handle di�erent space level

and individual level policies. Figure 7 shows the energy footprint

of an occupant when di�erent policies are applied. �e starting

situation is shown in Figure 7a. Halfway through the day, occupant

C leaves, leaving space A unoccupied. Figure 7b show the “tradi-

tional” equal division policy [8], where the consumption is divided
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(a) Apportionment policy starting scenario. Space 1 and Space 2
are in the same HVAC zone.

(b) No space policy, equal divi-
sion individual policy.

(c) Equal division space policy,
equal division individual policy.

(d) Proportional volume space
policy, equal division individual
policy.

(e) Proportional volume space
policy, proportional isolation in-
dividual policy.

Figure 7: Apportionment of an energy consuming resource
using di�erent space and individual policies.

evenly over the people in the space. When occupant C leaves, his

apportioned energy is distributed over occupants A and B.

Figure 7c shows the same situation, but with an additional space

policy (equal division). In 7d, the space policy is changed to pro-

portional volume; occupants A and B share an area 30% of the total

space; thus, they each claim 15% of the total energy consumption.

Finally, 7e changes the individual policy to proportional isolation

(de�ned in [26], with occupant A’s isolation consumption at 3000

W and occupant B’s isolation consumption at 7000 W).

We also use the criteria de�ned in [8] to evaluate the aggregate

policy de�ned in equation 1. �e �rst criterion is completeness, the

idea that the sum of apportioned energy to individuals should result

in the total energy consumed. It can be shown that, if space appor-

tionment policy f and individual apportionment policy д satisfy

the completeness criterion, then the comprehensive apportionment

policy h also satis�es completeness.

Proof. Given:∑
s ∈S f (s,d) = 1,

∑
p∈P д(p, s,d) = 1, h(p, s,d) = f (s,d)д(p, s,d).

Prove:
∑
s ∈S

∑
p∈P h(p, s,d) = 1.∑

s ∈S
∑
p∈P h(p, s,d) =

∑
s ∈S

∑
p∈P f (s,d)д(p, s,d).∑

s ∈S f (s,d)∑p∈P д(p, s,d) = 1 �

�e second criterion, accountability, is the idea that the actions

by one occupant should maximally a�ect their own energy con-

sumption while minimally a�ecting others. It can be seen from

Figure 7 that combining a space-level policy with an individual-

level policy separates the groups of occupants. In Figure 7b with the

common “equal division” individual policy, the actions of occupant

C detrimentally a�ect occupants A and B. On the other hand, in

Figures 7c, 7d, and 7e, the actions of occupant C have no e�ect on

occupants A and B due to the inclusion of the space level policy.

�e addition of space-level policy to apportionment maintains

completeness and improves accountability for situations in commer-

cial buildings, as in 7a. �us, this model serves as an improvement

to other apportionment models in commercial buildings.

6.3 Zoning
As described in Section 4.1.1, the partition of the total space into

zones is critical, as an improper partition of the space may result in

apportionment policies that cannot be implemented in ePrints. Fig-

ure 8 shows �ve partitioning strategies: 1) division of the total space

using building �oor plans, 2) division using HVAC zones, 3) division

using organization ownership, 4) division by occupant consensus,

and 5) division by automatic space clustering using the method

de�ned in Section 4.1.1. We partition by occupant consensus, by

polling occupants about how the spaces should be partitioned, to

use as a comparison against the automatic clustering method. �e

�nal three methods allow for space-level apportionment policies,

such that large energy resources that in�uence multiple spaces can

be divided based on space characteristics.

By measuring the area of overlap between the partitions arising

from the automatic space clustering method and from occupant

consensus, we see that the two methods yield an 81% similarity

value, showing that the clustering method presented in Section 4.1.1

can output similar zones as when space ownership is known.

6.4 Energy Footprint Computation Scalability
In Section 4.2, we introduced two sets of algorithms, one which

propagates footprint updates immediately, and one which post-

pones updates until a footprint query. �ere are multiple character-

istics of the deployment that a�ect the runtime of these algorithms,

including the branching factor (average number of devices a�ecting

a space) and the frequency of each type of event.

To determine the best set of algorithms for this task, we sim-

ulated di�erent deployments running ePrints by varying the de-

ployment size and the frequency of occupant location changes,

energy resource changes, and footprint queries. �e simulations

were performed on an Intel 2.4 GHz Core i7 processor. We made a

few realistic assumptions based on our testbed: two people and four

energy consuming resources per human-centric zone, and based on

[6], each person is allocated close to 250 square feet within a com-

mercial building. Finally, we made the baseline assumptions that on

average, each occupant is responsible for a footprint query every 2

seconds, changes location once a minute, and energy consuming

resources report their energy consumption every 30 seconds.

�e point at which a system can not handle the number of queries

is denoted by a straight red line in Figure 9. In Figure 9a, we show

the e�ect of the deployment area on the runtime of the footprint

computations. As the deployment area increases, the number of

occupants and the computation time of every type of event also

increases linearly. �e propagation algorithms outperform the de-

layed update algorithms as the deployment area increases. �e

same can be seen in Figure 9b; starting with the baseline, as we in-

crease the number of footprint queries while maintaining the other

parameters, the propagation algorithms perform be�er than the

delayed update algorithms. Since the advantage of the propagation

algorithms are lower latency of footprint queries, these results are
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(a) Division by building
�oorplan schematic.

(b) Division by HVAC
zones.

(c) Division by space own-
ership groupings.

(d) Division by occupant
consensus.

(e) Division by automatic
space clustering.

Figure 8: Partition of the testbed using di�erent zoning methods.

(a) Runtime of footprint com-
putation algorithms with vary-
ing deployment area.

(b) Runtime of footprint com-
putation algorithms with vary-
ing footprint query rate.

(c) Runtime of footprint compu-
tation algorithms with varying
location change rate.

(d) Runtime of footprint com-
putation algorithms with
varying resource change rate.

Figure 9: Scalability and comparison of “propagation” and “delayed update” algorithms.

intuitive. Also note that the propagation algorithms can support a

deployment of 20 million square feet in area and branching factor

of 7 at less than 50% processor utilization.

In Figure 9c, we again begin with the baseline assumptions, and

increase the number of location changes. As the frequency of loca-

tion changes increases, the delayed update algorithms outperform

the propagation algorithms; however, it should be noted that such

a deployment would require a large amount of occupant location

changes to take advantage of the delayed update algorithms.

Finally, in Figure 9d, we start with the baseline assumptions and

increase the number of energy resource changes. �is deployment

may include resources that have a high energy reporting rate or

more resources than the initial assumptions. As the frequency of

resource changes increases, the delayed update algorithms outper-

form the propagation algorithms by a margin of 10 − 20%.

Based on the results of the simulations, a deployment resembling

our testbed would bene�t from implementing the propagation algo-

rithms. Further, the propagation algorithms are scalable to larger

deployments, and can support di�erent environments with vary-

ing branching factors, number of occupants, number of energy

consuming resources, and number of human-centric zones.

7 ENABLED APPLICATIONS
7.1 Energy Saving Suggestions
One application ePrints enables is energy saving suggestions based

o� of personal energy footprints. By monitoring a footprint along

with major events (such as occupancy changes, HVAC consumption

changes, or location changes), one can create a table of events

along with each event’s average energy saving and the number of

occurrences as shown in table 2.

Event Name Average Energy Saved Event Occurrence

Move from Lab B to Workspace B 7.1 kW 98

Move from Lab A to Workspace B 5.9 kW 148

Move from Lab A to Workspace A 2.1 kW 170

Occupancy increase in Lab A 2.0 kW 332

Occupancy increase in Workspace A 204 W 38

VAV node A temperature change 296 W 4

VAV node B temperature change 250 W 2

VAV node C temperature change 139 W 7

Table 2: Energy Saving Events

�e table of events can be used to inform energy saving sug-

gestions, how e�ective an occupant’s action is in terms of energy

savings, and which actions are more likely to be taken by an occu-

pant. For example, a move from Lab A to Workspace B decreases

energy consumption by 5.9 kilowa�s of energy on average. If the

occupant historically has taken this action only a few times, it is un-

likely that suggesting this action will be in line with the occupant’s

intentions. On the other hand, a move from Lab A to Workspace A

may decrease energy consumption by fewer wa�s on average, but

occurs more o�en; thus, this suggestion may be more e�ective.

Without personal energy footprints, informing energy saving

suggestions is di�cult if not impossible. Suggestions can be opti-

mized in various ways by analyzing personal energy footprints.

7.2 Building Level Policies
Personal energy footprints are valuable for buildings that allow

zone-based HVAC and lighting control, by providing insights into

potential actions, and have to potential to save signi�cant amounts

of energy when paired with building level policies.

An indirect consequence of the personal energy footprint, along

with the space de�nitions, is the ability to directly derive space level

occupancy and energy consumption, and hence the unapportioned

energy consumption (energy consumption in unoccupied spaces).
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Figure 10: Energy consumption utilization over time, for dif-
ferent energy consuming resource types.

In our deployment, a number of spaces are not only unused during

the nigh�ime, but also unused during the daytime. Figure 10 shows

the average proportion of unapportioned and apportioned energy

of all spaces in our deployment, over a 10 week span. During the

nigh�ime, there is low energy utilization (high proportion of un-

apportioned energy) as most spaces are unoccupied. However, it

is also notable that during the daytime, a signi�cant portion of en-

ergy consumption remains unapportioned; this can be a�ributed to

certain large spaces being almost completely unoccupied through-

out the day. �is knowledge can help building managers design

building level policies and promote energy saving by sensing and

optimizing spaces with low energy utilization.

8 CONCLUSIONS
In this paper, we �rst present design challenges for energy foot-

printing in commercial buildings. We propose a novel space-centric

policy for fair apportionment of energy in shared environments

and demonstrate a method for automatically determining space-

centric energy zones. We design and implement ePrints – a system

for tracking personal energy consumption in real-time. ePrints

supports di�erent apportionment policies, with µs-level footprint

computation time and graceful scaling with size of building, fre-

quency of energy updates, and rate of occupant location changes.

Finally, we presented applications enabled by ePrints, such as mo-

bile and wearable applications to provide users timely feedback on

the energy consequences of their actions, as well as energy saving

suggestions and building level policies.
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